Какие функции выполняют гормоны белковой природы в организме

Содержание

Белковые гормоны: описание, свойства, функции и строение

Какие функции выполняют гормоны белковой природы в организме

Гормоны – мельчайшие элементы, вырабатываемые нашим организмом. Однако без них невозможно ни существование человека, ни прочих живых систем. В статье мы приглашаем вас познакомиться с одной их разновидностью – белковыми гормонами. Приведем особенности, функции и описание данных элементов.

Что такое гормоны?

Начнем с ключевого понятия. Слово произошло от греч. ὁρμάω – “возбуждаю”. Это органические биологически активные вещества, которые вырабатываются собственными железами внутренней секреции организма. Поступая в кровь, связываясь с рецепторами определенных клеток, они регулируют физиологические процессы, обмен веществ.

Белковые гормоны (как и все иные) – это гуморальные (переносимые в крови) регуляторы конкретных процессов, происходящих в органах и их системах.

Самое широкое определение: химические сигнальные вещества, вырабатываемые одними клетками организма для влияния на другие части тела. Гормоны синтезируются и позвоночными, к которым мы с вами относимся (специальными эндокринными железами), и животными, что лишены традиционной кровеносной системы, и даже растениями.

Главные функции гормонов

Эти регуляторы, к которым относятся белковые гормоны, призваны осуществлять в организме целый ряд функций:

  • Стимуляция или подавление роста.
  • Смена настроения.
  • Стимуляция или подавления апоптоза – гибели старых клеток в организме.
  • Стимуляция и подавление функций защитной системы организма – иммунитета.
  • Регуляция метаболизма – обмена веществ.
  • Подготовка организма к активным действиям, физическим нагрузкам – от бега до борьбы и спаривания.
  • Подготовка живой системы к важному периоду развития или функционирования – половому созреванию, беременности, родам, угасанию.
  • Контроль репродуктивного цикла.
  • Регуляция чувства насыщения и чувства голода.
  • Вызов полового влечения.
  • Стимуляция выработки других гормонов.
  • Самая важная задача – это поддержание гомеостаза организма. То есть, постоянства его внутренней среды.

Раз мы выделяем белковые гормоны, значит, существует определенная градация этих биологически активных веществ. По классификации их разделяют на следующие группы, отличающиеся своим особым строением:

  • Стероиды. Это химические полициклические элементы, имеющие липидную (жировую) природу. В основе структуры – стерановое ядро. Именно оно ответственно за единство их полиморфного класса. Даже малейшие различия стерановой основы будут обуславливать различия свойств гормонов данной группы.
  • Производные жирных кислот. Эти соединения отличает высокая нестабильность. Оказывают местное воздействие на расположенные по соседству клетки. Второе название – эйкозаноиды. Разделяются на тромбоксаны, простагландины и лейкотриены.
  • Производные аминокислот. В частности, это все же производные элемента тирозина – адреналин, тироксин, норадреналин. Синтезируются (образуются, вырабатываются) щитовидной железой, надпочечниками.
  • Гормоны белковой природы. Сюда входят и белковые, и пептидные, оттого второе название – белково-пептидные. Это гормоны, что вырабатывает поджелудочная железа, а также гипофиз и гипоталамус. Среди них важно выделить инсулин, гормон роста, кортикотропин, глюкагон. С некоторыми из гормонов белково-пептидной природы мы познакомимся подробнее на протяжении статьи.

Белковая группа

Отличается среди всех перечисленных своей разнообразностью. Вот основные гормоны, ее “населяющие”:

  • Гипоталамусовые рилизинг-факторы.
  • Тропные гормоны, вырабатывающиеся аденогипофизом.
  • Регуляторные вещества, выделяемые эндокринной тканью поджелудочной железы, – глюкагон и инсулин. Последний отвечает за должный уровень глюкозы (сахара) в крови, регулирует ее поступление в клетки мускулатуры и печени, где вещество обращается в гликоген. Если инсулин не вырабатывается или выделяется организмом недостаточно, у человека развивается сахарный диабет. Глюкагон и адреналин схожи по своему действию. Они, напротив, повышают содержание сахара в кровяной массе, способствуя распаду гликогена в печени – при этом процессе и образуется глюкоза.
  • Гормон роста. Соматотропин ответственен и за рост скелета, и за увеличение массы тела живого существа. Его недостаток приводит к аномалии – карликовости, избыток – к гигантизму, акромегалии (непропорционально большим рукам, ступням, голове).

Данный орган вырабатывает большую часть белково-пептидных гормонов:

  • Гонадотропный гормон. Стимулирует процессы в организме, связанные с размножением. Ответственен за образование половых гормонов в половых железах.
  • Соматомедин. Гормон роста.
  • Пролактин. Гормон белкового обмена, ответственен за функциональность молочных желез, а также за выработку ими казеина (белка молока).
  • Полипептидные низкомолекулярные гормоны. Эти соединения влияют уже не на дифференцировку клеток, а на определенные физиологические процессы организма. Например, вазопрессин и окситоцин регулируют артериальное давление, “следят” за работой сердца.

Синтез в поджелудочной железе

В данном органе происходит синтез белковых гормонов, контролирующих углеводный обмен в организме. Это уже упомянутые нами инсулин и глюкагон. Сама по себе данная железа – экзокринная. Она также вырабатывает ряд пищеварительных ферментов, которые затем поступают в двенадцатиперстную кишку.

Всего лишь 1 % ее клеток будет находиться в составе так называемых островков Лангерганса. К ним относятся две особые разновидности частиц, которые функционируют, как эндокринные железы. Именно они и вырабатывают альфа-клетки (глюкагон) и бета-клетки (инсулин).

Кстати, современные ученые уже отмечают, что действие инсулина не ограничивается стимуляцией обращения глюкозы в гликоген в клетках печени. Этот же гормон ответственен за некоторые процессы пролиферации и дифференцировки во всех клетках.

Синтез в почках

В данном органе вырабатывается только один вид – эритропоэтин. Функции белковых гормонов данной группы – регуляция дифференцировки эритроцитов в селезенке и костном мозге.

Что касается синтеза самой белковой группы, то это достаточно сложный процесс. В нем задействована нервная центральная система – она действует через рилизинг-факторы.

Еще в тридцатые годы прошлого века советским исследователем Завадовским М. М. была открыта система, которую он назвал “плюс-минус-взаимодействие”.

Хорош пример данного закона регуляции на основе синтеза тироксина в щитовидке и синтеза в гипофизе тиреотропного гормона. Что мы видим здесь? Плюс-действие в том, что тиреотропный гормон будет стимулировать выработку щитовидной железой тироксина.

А каково же минус-действие? Тироксин, в свою очередь, подавляет выработку гипофизом тиреотропного гормона.

В результате регуляции “плюс-минус-взаимодействие” мы отмечаем поддержание в крови постоянного обмена тироксина. При его недостатке деятельность щитовидки будет стимулироваться, а при избытке – подавляться.

Действие белковой группы

Давайте проследим теперь за действием белковых гормонов:

  1. Сами по себе они не проникают в клетку-мишень. Элементы находят на ее поверхности специальные белковые рецепторы.
  2. Последние “узнают” гормон и определенным образом связываются с ним.
  3. Связка будет, в свою очередь, активировать фермент, находящийся на внутренней стороны мембраны клетки. Его название – аденилатциклаза.
  4. Данный фермент начинаем превращать АТФ в циклическую АМФ (цАМФ). В иных случаях подобным образом из ГТФ получается цГМФ.
  5. цГМФ или цАМФ далее проследует в клеточное ядро. Там она будет активировать особые ядерные ферменты, фосфорилирующие белки – негистоновые и гистоновые.
  6. Итог – активация определенного набора генов. Например, в половых клетках начинают работать те, что ответственны за выработку стероидов.
  7. Последний этап всего описанного алгоритма – соответствующая дифференцировка.

Инсулин

Инсулин – белковый гормон, известный практически каждому человеку. И не случайно – он самый изученный на сегодня.

Ответственен за многогранное влияние на обмен веществ практически во всех тканях организма. Однако главное его предназначение – регуляция концентрации глюкозы в крови:

  • Увеличивает проницаемость плазматической клеточной массы для глюкозы.
  • Активирует ключевые фазы, ферменты гликолиза – процесса окисления глюкозы.
  • Стимулирует образование из глюкозы гликогена в специальных клетках мышц и печени.
  • Усиливает синтез белков и жиров.
  • Подавляет активную деятельность ферментов, расщепляющих жиры и белки. Иными словами, обладает и анаболическим, и антикатаболическим эффектом.

Абсолютная недостаточность инсулина приводит к развитию сахарного диабета первого типа, относительная недостаточность – к развитию диабета второго типа.

Молекулу инсулина образуют две полипептидные цепи, имеющие 51 аминокислотный осадок: А – 21, В – 30. Их соединяют два дисульфидных мостика через цистеиновые остатки. Третья дисульфидная связь располагается в А-цепи.

Инсулин человека отличается от инсулина свиньи всего одним аминокислотным остатком, от бычьего – тремя.

Гормон роста

Соматотропин, СТГ, соматотропный гормон – это все его названия. Гормон роста вырабатывается передней долей гипофиза. Его относят к полипептидным гормонам – также в этой группе пролактин и лактоген плацентарный.

Основное действие следующее:

  • У детей, подростков, молодых людей – ускорение линейного роста за счет удлинения трубчатых длинных костей конечностей.
  • Мощное антикатаболическое и анаболическое действие.
  • Усиление синтеза белка и торможение его распада.
  • Способствуют уменьшению отложений подкожных запасов жира.
  • Усиливает сгорание жира, стремится выровнять соотношение мышечной и жировой массы.
  • Повышает уровень глюкозы в крови, выступая антагонистом инсулина.
  • Участвует в углеводном обмене.
  • Воздействие на островковые участки поджелудочной железы.
  • Стимуляция поглощения костной тканью кальция.
  • Иммуностимуляция.

Кортикогормон

Другие названия – адренокортикотропный гормон, кортикотропин, кортикотропный гормон и проч. Состоит из 39-ти аминокислотных остатков. Вырабатывается базофильными клетками передней части гипофиза.

Основные функции:

  • Контроль за синтезом и секрецией гормонов коры надпочечников, пучковой области. Его мишени – кортизон, кортизол, кортикостерон.
  • Попутно стимулирует образование эстрогенов, андрогенов, прогестерона.

Белковая группа – одна из важных в семействе гормонов. Является самой разнообразной по функциям, областям синтеза.

Источник: https://FB.ru/article/386762/belkovyie-gormonyi-opisanie-svoystva-funktsii-i-stroenie

Функции белков в организме | Химия онлайн

Какие функции выполняют гормоны белковой природы в организме

Функции белков в природе универсальны. Белки входят в состав всех живых организмов. Мышцы, кости, покровные ткани, внутренние органы, хрящи, шерсть, кровь — все это белковые вещества.

Растения синтезируют белки из углекислого газа и воды за счет фотосинтеза. Животные организмы получают, в основном, готовые аминокислоты с пищей и на их базе строят белки своего организма.

Ни один из известных нам живых организмов не обходится без белков.

Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов – катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д.

фильм«Функции белков»

Разнообразные функции белков определяются a-аминокислотным составом и строением их высокоорганизованных макромолекул.

1. Каталитическая (ферментативная) функция

Каталитическая функция — одна из основных функций белков. Абсолютно все биохимические процессы в организме протекают в присутствии катализаторов – ферментов. Все известные ферменты представляют собой белковые молекулы.

Белки – это очень мощные катализаторы. Они ускоряют реакции в миллионы раз, причем для каждой реакции существует свой фермент.

В настоящее время известно свыше 2000 различных ферментов, которые являются биологическими катализаторами.

Например, фермент пепсин расщепляет белки в процессе пищеварения.

Даже такая простая реакция как гидратация углекислого газа катализируется ферментом карбоангидразой.

Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации ДНК и матричного синтеза РНК.

2. Транспортная функция 

Некоторые белки способны присоединять и переносить (транспортировать) различные вещества по крови от одного органа к другому и в пределах клетки.

Белки транспортируют липиды (липопротеиды), углеводы (гликопротеиды), ионы металлов (глобулины), кислород и углекислый газ (гемоглобин), некоторые витамины, гормоны и др.

Например, альбумины крови транспортируют липиды и высшие жирные кислоты (ВЖК), лекарственные вещества, билирубин.

Белок эритроцитов крови гемоглобин соединяется в легких с кислородом, превращаясь в оксигемоглобин. Достигая с током крови органов и тканей, оксигемоглобин расщепляется и отдает кислород, необходимый для обеспечения окислительных процессов в тканях.

Белок миоглобин запасает кислород в мышцах.

Специфические белки-переносчики обеспечивают проникновение минеральных веществ и витаминов через мембраны клеток и субклеточных структур.

3. Защитная функция 

Защитную функцию выполняют специфические белки (антитела — иммуноглобулины), которые вырабатываются иммунной системой организма. Они обеспечивают физическую, химическую и иммунную защиту организма путем связывания и обезвреживания веществ, поступающих в организм или появляющихся в результате жизнедеятельности бактерий и вирусов.

Например, белок плазмы крови фибриноген участвует в свертывании крови (образовывает сгусток). Это защищает организм от потери крови при ранениях.

Альбумины обезвреживают ядовитые вещества (ВЖК и билирубин) в крови.

Антитела, вырабатываемые лимфоцитами, блокируют чужеродные белки. Интерфероны — универсальные противовирусные белки.

Многие живые существа для обеспечения защиты выделяют белки, называемые токсинами, которые в большинстве случаев являются сильными ядами. В свою очередь, некоторые организмы способны вырабатывать антитоксины, которые подавляют действие этих ядов.

4. Сократительная (двигательная) функция

Важным признаком жизни является подвижность, в основе которой лежит данная функция белков, таких как актин и миозин – белки мышц. Кроме мышечных сокращений к этой функции относят изменение форм клеток и субклеточных частиц.

B результате взаимодействия белков происходит передвижение в пространстве, сокращение и расслабление сердца, движение других внутренних органов.

5. Структурная функция

Структурная функция — одна из важнейших функций белков. Белки играют большую роль в формировании всех клеточных структур.

Белки – это строительный материал клеток. Из них построены опорные, мышечные, покровные ткани.

Некоторые из них (коллаген соединительной ткани, кератин волос, ногтей, эластин стенок кровеносных сосудов, фиброин шелка и др.) выполняют почти исключительно структурную функцию.

Кератин синтезируется кожей. Волосы и ногти – это производные кожи.

В комплексе с липидами белки участвуют в построении мембран клеток и внутриклеточных образований.

6. Гормональная (регуляторная) функция 

Регуляторная функция присуща белкам-гормонам (регуляторам). Они регулируют различные физиологические процессы.

Например, наиболее известным гормоном является инсулин, регулирующий содержание глюкозы в крови. При недостатке инсулина в организме возникает заболевание, известное как сахарный диабет.

 Интересно знать!

В плазме некоторых антарктических рыб содержатся белки со свойствами антифриза, предохраняющие рыб от замерзания, а у ряда насекомых в местах прикрепления крыльев находится белок резилин, обладающий почти идеальной эластичностью. В одном из африканских растений синтезируется белок монеллин с очень сладким вкусом.

7. Питательная (запасная) функция

Питательная функция осуществляется резервными белками, которые запасаются в качестве источника энергии и вещества.

Например: казеин, яичный альбумин, белки яйца обеспечивают рост  и развитие плода, а белки молока служат источником питания для новорожденного.

8. Рецепторная (сигнальная) функция

Некоторые белки (белки-рецепторы), встроенные в клеточную мембрану, способны изменять свою структуру под воздействием внешней среды. Так происходит прием сигналов извне и передача информации в клетку.

Например, действие света на сетчатку глаза воспринимается фоторецептором родопсином.

Рецепторы, активизируемые низкомолекулярными веществами типа ацетилхолина, передают нервные импульсы в местах соединения нервных клеток.

 9. Энергетическая функция

Белки могут выполнять энергетическую функцию, являясь одним из источников энергии в клетке (после их гидролиза). Обычно белки расходуются на энергетические нужды в крайних случаях, когда исчерпаны запасы углеводов и жиров.

При полном расщеплении 1 г белка до конечных продуктов выделяется 17,6 кДж энергии. Но в качестве источника энергии белки используются крайне редко. Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

Белки

Источник: https://himija-online.ru/organicheskaya-ximiya/belki/funkcii-belkov-v-organizme.html

Основные функции белков в клетке

Какие функции выполняют гормоны белковой природы в организме

Благодаря сложности, разнообразию форм и состава, белки играют важную роль в жизнедеятельности клетки и организма в целом.

Белок — это отдельный полипептид или агрегат нескольких полипептидов, выполняющий биологическую функцию.

Полипептид — понятие химическое. Белок — понятие биологическое.

В биологии функции белков можно разделить на следующие виды:

1. Строительная функция

Белки участвуют в образовании клеточных и внеклеточных структур. Например:

  • кератин – из него состоят волосы, ногти, перья, копыта
  • коллаген – главный компонент хрящей и сухожилий;
  • эластин (связки);
  • белки клеточных мембран (в основном – гликопротеиды)

2. Транспортная функция

Некоторые белки способны присоединять различные вещества и переносить их к различным тканям и органам тела, из одного места клетки в другое. Например:

  • липопротеины — отвечает за перенос жира.
  • гемоглобин — транспорт кислорода, белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ;
  • гаптоглобин — транспорт гема),
  • трансферрин — транспорт железа.

Белки транспортируют в крови катионы кальция, магния, железа, меди и другие ионы.

В состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно. Транспорт веществ через мембраны осуществляют белки – Na+,К+-АТФаза (антинаправленный трансмембранный перенос ионов натрия и калия), Са2+-АТФаза (выкачивание ионов кальция из клетки), глюкозные транспортеры.

3. Регуляторная функция

Большая группа белков организма принимает участие в регуляции процессов обмена веществ. Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например:

  • гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена.

4. Защитная функция

  • В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их.
  • Фибрин, образующийся из фибриногена, способствует остановке кровотечений.

5. Двигательная функция

  • Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных, движений листьев у растений, мерцание ресничек у простейших и т.д.

6. Сигнальная функция

  • В поверхностную мембрану клетки встроены молекулы белков (рецепторы), способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.

7. Запасающая функция

  • В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. У животных и человека при длительном голодании используются белки мышц, эпителиальных тканей и печени.
  • Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.

8. Энергетическая функция

  • При распаде 1г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы (по словам одного из биохимиков: использовать белки для получения энергии – все равно, что топить печь долларовыми купюрами).

9. Каталитическая (ферментативная) функция

  • Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках.

Ферменты, или энзимы, — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью.

Вещество, на которое оказывает свое действие фермент, называют субстратом.

Ферменты можно разделить на две группы:

  1. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот.
  2. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор. У некоторых ферментов в качестве кофакторов выступают витамины.

10. Функция антифириза

  • В плазме крови некоторых живых организмов содержатся белки которые предупреждают ее замерзание в условиях низких температур.

11. Питательная (резервная) функция

  • Эту функцию выполняют так называемые резервные белки, являющиеся источниками питания для плода, например белки яйца (овальбумины). Основной белок молока (казеин) также выполняет главным образом питательную функцию. Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма.

Решай задания и варианты по биологии с ответами

Источник: https://bingoschool.ru/blog/41/

Гормоны-белки: функции в организме человека, примеры

Какие функции выполняют гормоны белковой природы в организме

Гормоны — это вещества, которые синтезируются в теле человека при помощи специализированных желез внутренней секреции. Каждый гормон имеет особую биологическую активность. На данный момент выделяют примерно 60 веществ, которые выделяются железами и обладают гормональной активностью.

Основные разновидности гормонов

Наибольшее распространение получила классификация гормонов в зависимости от их химической структуры. Они подразделяются на такие виды:

  • гормоны-белки, которые могут быть простыми и сложными;
  • биологически активные вещества пептидной природы: кальцитонин, окситоцин, соматостатин, глюкагон, вазопрессин;
  • производные аминокислот: тироксин, адреналин;
  • биологически активные вещества липидной природы: кортикостероиды, женские и мужские половые гормоны;
  • тканевые гормоны: гепарин, гастрин.

Как уже было отмечено выше, гормоны-белки делятся еще на два подвида:

  • простые: инсулин, соматотропный гормон, пролактин;
  • сложные: лютропин, фолликулостимулирующий гормон, тиреотропный гормон.

Примеры гормонов-белков и их функции целесообразно рассматривать в зависимости от того, в каком органе они синтезируются. А это могут быть следующие структуры организма:

  • гипоталамус;
  • гипофиз;
  • паращитовидные железы;
  • поджелудочная железа;
  • клетки желудочно-кишечного тракта.

Биологически активные вещества гипоталамуса

Абсолютно все вещества, которые вырабатываются гипоталамусом, относятся к группе гормонов-белков и полипептидов. Их основная функция — регулировать выработку гормонов в гипофизе. В зависимости от того, каким образом они осуществляют эту функцию, выделяют несколько разновидностей:

  • рилизинг-гормоны повышают активность гипофиза;
  • статины угнетают синтез биологически активных веществ гипофизом;
  • гормоны задней доли не оказывают влияния на активность гипофиза, накапливаются в его задней части, прежде чем выделиться в кровь.

Гипоталамус опосредованно через гипофиз влияет на функцию щитовидной железы и надпочечников, половой системы, регулирует рост человека.

Рилизинг-гормоны гипоталамуса

К рилизинг-гормонам относятся следующие вещества:

  • соматотропин рилизинг-гормон (СРГ);
  • тиреотропин рилизинг-гормон (ТРГ);
  • гонадотропин рилизинг-гормон (ГнРГ);
  • кортикотропин рилизинг-гормон (КРГ).

Функция белков-гормонов данной группы заключается в повышении синтеза соответствующих биологически активных веществ в гипофизе.

Так, СРГ стимулирует выработку соматотропного гормона и пролактина, ТРГ усиливает производство тиреотропного гормона, ГнРГ повышает синтез лютеинизирующего и фолликулостимулирующего гормонов, КРГ увеличивает выработку кортикотропина. При чем все тропные гормоны образуются в передней доле гипофиза (всего их три).

КРГ имеет не только биологическую, но и нейрональную активность. Поэтому его еще относят к классу нейропептидов.

Благодаря передаче КРГ в нервных синапсах у человека возникают ощущения тревоги, страха, беспокойства, нарушение сна и аппетита, снижение половой активности.

При длительном воздействии кортикотропин рилизинг-гормона развиваются стойкие психические нарушения: депрессия, тревожность, бессонница, истощение организма.

ТРГ также относят к классу нейропептидов. Он участвует в осуществлении определенных психических функций. Например, установлена его антидепрессивная активность.

Синтез ГнРГ имеет некоторую цикличность. Он вырабатывается несколько минут через каждые 1-3 часа.

Биологически активные вещества гипофиза

Гормоны-белки — это также вещества, которые синтезируются в передней и задней долях гипофиза. Причем в передней области производятся тропные гормоны, а в задней образование новых веществ не происходит, но накапливаются окситоцин и вазопрессин, которые ранее синтезировались в гипоталамусе.

К тропным относятся такие пептидные и белковые структуры:

  • адренокортикотропный гормон (АКТГ);
  • тиреотропный гормон (ТТГ);
  • лютеинизирующий гормон (ЛГ);
  • фолликулостимулирующий гормон (ФСГ).

Все они оказывают стимулирующее влияние на периферические железы внутренней секреции. Так, АКТГ повышает активность надпочечников, ТТГ активирует щитовидную железу, а ЛГ и ФСГ — гонады.

Отдельно выделяют эффекторные биологически активные вещества. Они не регулируют функцию желез внутренней секреции, а стимулируют органы, которые находятся вне эндокринной системы.

Адренокортикотропный гормон

Адренокортикотропный гормон прямо связан с надпочечниками, а именно с его корой. Он повышает синтез и выделение в кровяное русло кортикостероидов. Характерным является то, что происходит стимуляция только двух слоев коры надпочечников — пучковой и сетчатой. Клубочковая зона, где синтезируются минералокортикоиды, не находится под влиянием тропных биологически активных веществ гипофиза.

Размеры АКТГ небольшие. Он состоит всего из 39 остатков аминокислот. Его концентрация в крови, по сравнению с остальными гормонами, не очень высокая. Синтез этого вещества имеет четкую зависимость от времени суток.

Это называется циркадным ритмом. Максимальное его количество в крови наблюдается в утреннее время при пробуждении организма. Это связано с необходимостью мобилизовать все силы организма после сна.

Также количество этих гормонов-белков повышается при стрессовых ситуациях.

Помимо влияния АКТГ на кору надпочечников, он также действует на структуры, которые не относятся к эндокринной системе. Так, он увеличивает распад липидов в жировой ткани.

При повышении активности надпочечников, например при синдроме Иценко-Кушинга, по механизму обратной связи выработка АКТГ уменьшается. Это, в свою очередь, угнетает синтез кортикотропин рилизг-гормона в гипоталамусе.

Тиреотропный гормон

Тиреотропный гормон, или ТТГ, состоит из двух частей: альфа и бета. Альфа-часть ТТГ сходна с таковой у гонадотропных гормонов, а бета-чать присуща только тиреотропину.

ТТГ регулирует рост щитовидной железы, обеспечивая ее увеличение в размерах.

Это вещество также повышает синтез тироксина и трийодтиронина — главных гормонов щитовидной железы, которые необходимы для нормального обмена веществ в организме.

Рилизинг-гормоны гипоталамуса влияют на выработку ТТГ в гипофизе. Здесь также работает механизм обратной связи: при повышенной активности щитовидной железы (тиреотоксикозе) угнетается синтез ТТГ в гипофизе, и, наоборот.

Гонадотропный гормон

Гонадотропные гормоны (ГнТГ) у млекопитающих, в том числе и у людей, представлены фолликулостимулирующим (ФСГ) и лютеинизирующим (ЛГ) гормонами.

Они отличаются не только по своей структуре, но и по функциям. Причем они несколько отличны в зависимости от пола.

У женщин ФСГ стимулирует рост и дозревание фолликулов, мужчинам он нужен для образования семенных канатиков и дифференциации сперматозоидов.

ЛГ у девушек участвует в образовании желтого тела в яичниках, овуляции. У мужчин эти гормоны-белки осуществляют функцию секреции тестостерона семенниками. Причем тестостерон вырабатывается не только у мужчин, но и у женщин.

Отвечая на вопрос, какие гормоны-белки стимулируют выработку ФСГ и ЛГ гормонов в гипофизе, стоит отметить, что это лишь один гормон. Он получил название гонадотропин рилизинг-гормона. Помимо активности периферических эндокринных желез, синтез ГнРГ регулируется органами центральной нервной системы (лимбической частью головного мозга).

Эффекторные гормоны передней доли гипофиза

Эффекторные гормоны-белки выполняют функцию стимуляции активности внутренних органов, которые находятся за пределами эндокринной системы. К ним относятся:

  • соматотропный гормон;
  • пролактин;
  • меланоцитстимулирующий гормон.

Соматотропный гормон или гормон роста — это крупный белок, который включается в себя 191 аминокислотный остаток. Его строение очень похожу на структуру другого гормона гипофиза — пролактина.

Основная функция соматотропина — стимуляция роста костей и всего организма в целом.

Процесс роста под влиянием соматотропина осуществляется за счет увеличения размеров и количества клеток, которые находятся в хрящах эпифизов (крайних участков костей).

После того, как закончится половое созревание, хрящевая ткань замещается на костную. Вследствие этого соматотропин не может больше стимулировать рост костей. Поэтому человек растет до определенного возраста.

Чрезмерный синтез гормона роста в детском возрасте приводит к тому, что ребенок вырастает слишком высоким. Но все части тела увеличены пропорционально. Такое состояние называется гигантизмом. Если соматотропин активно вырабатывается у взрослых, возникает непропорциональное разрастание отдельных частей тела — акромегалия.

Если, наоборот, соматотропный гормон роста вырабатывался в недостаточном количестве, развивается карликовость. Ребенок вырастает очень низким, но пропорции тела сохранены.

Биологически активные вещества поджелудочной железы

Поджелудочная железа относится к группе желез смешанной секреции. Это значит, что она помимо синтеза гормонов, также производит ферменты, которые необходимы для переваривания пищи в кишечнике. Синтез гормонов-белков и ферментов — две самые важные функции поджелудочной железы.

Наиболее важные биологически активные вещества, которые вырабатываются в поджелудочной, это инсулин и глюкагон. Они являются антагонистами друг друга, то есть выполняют абсолютно противоположные функции. За счет слаженного действия этих гормонов обеспечивается нормальный углеводный обмен.

Инсулин образуется в островках Лангерганса из проинсулина. Он уменьшает концентрацию глюкозы в крови за счет следующих процессов:

  • повышения ее утилизации в клетках;
  • угнетения глюконеогенеза (синтеза глюкозы в печени);
  • угнетения гликолиза (распада гликогена до глюкозы);
  • стимуляции гликогенеза (образования гликогена из глюкозы).

Также инсулин способствует образованию белков и жиров. То есть он относится к анаболическим гормонам. Глюкагон оказывает абсолютно противоположный эффект, и поэтому его отнесли к катаболическим гормонам.

Заключение

Гормоны-белки и липиды — очень важные вещества в организме. Белки, которые синтезируется в основном в гипоталамусе и гипофизе, оказывают влияние на синтез биологически активных веществ в периферических эндокринных железах. А стероидные и половые гормоны, которые вырабатываются в надпочечниках и гонадах под действием белков, жизненно необходимы для человека.

Выработка биологически активных веществ во всем организме происходит слажено, под четким контролем. А нарушение этих функций может приводить к опасным, а иногда и необратимым последствиям.

Источник: https://News4Auto.ru/gormony-belki-fynkcii-v-organizme-cheloveka-primery/

Эффективность белковых гормонов в организме

Какие функции выполняют гормоны белковой природы в организме

Популярный отрывок из определения жизни Ф. Энгельса о том, что «это есть способ существования белковых тел» полностью соответствует действительности.

Без протеинов различных размеров существование действительно невозможно.

Однако не каждый сможет перечислить, какие именно функции выполняют белки в организме.

Что такое белковые гормоны?

Гормоны – вещества, которые выделяются клетками без нарушения их целостности, и попадают непосредственно в кровь.

Механизм действия белковых гормонов реализуется через непосредственное влияние на органы-мишени или воздействие на другие железы организма. Они синтезируются в виде предшественников, но после определенных химических реакций становятся активными и выполняют свою работу.

Белковые гормоны – цепочки аминокислот, соединенных пептидными связями. Число звеньев в одной молекуле вещества не превышает 200.

Гормоны, являющиеся по химической природе белками или гликопротеидами (белок и углеводный компонент), производятся аденогипофизом, гипоталамусом, паратиреоидными железами и клетками поджелудочной железы.

Основные функции инсулина

Инсулин — белковый гормон, который секретируется поджелудочной железой. Основной его функцией является поддержание определенного уровня глюкозы в крови.

Инсулин реализует свое действие на органы-мишени через рецепторы в тканях.

В мышцах этот гормон:

  • активирует транспорт глюкозы в клетки;
  • стимулирует синтез гликогена;
  • активирует доставку аминокислот в ткань;
  • стимулирует синтез белка.

В печени инсулин:

  • активирует синтез гликогена из глюкозы;
  • подавляет образование гликогена из неуглеводных продуктов;
  • стимулирует синтез жирных кислот и ЛПОНП.

ЛПОНП – липопротеины очень низкой плотности, образуются в печени, работают транспортировщиками липидов в организме (триглицеридов, фосфолипидов, холестерина и его эфиров).

В жировой ткани этот белковый гормон:

  • «пропускает» глюкозу в клетки;
  • стимулирует расщепление жиров;
  • усиливает синтез жирных кислот.

Паратиреоидный гормон

Паратиреоидный гормон вырабатывается железами, находящимися на задней поверхности щитовидной железы. Их количество в организме от 3 до 6. Каждая из них имеет размер чуть больше спичечной головки, однако все вместе они регулируют обмена кальция и фосфора.

Основная задача паратиреоидного гормона – поддержание постоянной концентрации в крови ионизированного кальция.

Он воздействует на кости тел трубчатых костей (бедренные, локтевые, плечевые и т.д.), активируя разрушение матрицы, благодаря чему усиливается поступление кальция в кровь.

В почках регуляторная функция этого белка реализуется через:

  • усиление выведения фосфатов;
  • задержание ионов кальция;
  • усиление экскреции калия, натрия, хлорида, сульфатов;
  • перевод витамина D3 в активную форму.

В кишечнике паратгормон усиливает всасывание кальция при наличии витамина D.

Функции соматотропина

Белковый гормон соматотропин производятся клетками аденогипофиза, расположенного в головном мозге. Он выполняет анаболическую функцию, стимулирует рост. Действие соматотропина заключается в следующем:

  • отвечает за рост костей в длину;
  • увеличивает синтез белка в мышцах, костях, хряще, печени;
  • действует на жировой обмен, сначала активируя синтез жиров, затем их расщепление;
  • инсулиноподобный эффект (стимулирует поглощение глюкозы клетками).

За что отвечает тиреотропин

Тиреотропный гормон вырабатывается аденогипофизом, основное действие направлено на процессы, происходящие в щитовидной железе:

  • стимуляция кровоснабжения;
  • рост и размножение клеток железы;
  • стимуляция захвата йода;
  • активация выработки гормонов тироксина и трийодиронина.

Роль гонадотропина в организме

Гонадотропины производятся аденогипофизом и хорионом. К ним относят:

  • фолликулостимулирующий гормон (ФСГ);
  • лютеинизирующий гормон (ЛГ);
  • хорионический гонадотропин.

ЛГ и ФСГ также относятся к белковым и пептидным гормонам и вырабатываются как в организме женщины, так и мужчины.

У представительниц прекрасного пола ФСГ помогает созревать яйцеклеткам в яичниках и преобразует мужские половые гормоны в эстрогены, ЛГ вызывает овуляцию, стимулирует выработку женских половых гормонов.

У мужчин ФСГ вызывает выработку сперматозоидов, транспорт тестостерона к яичкам, а ЛГ работает на синтез тестостерона и его предшественников.

Хорионический гонадотропин имеет другое название – гормон беременности. Он вырабатывается после имплантации оплодотворенной яйцеклетки в матку.

Его задача заключается в поддержании желтого тела в яичнике. Это обеспечивает сохранение беременности до тех пор, пока плацента не возьмет на себя эту функцию.

Функции вазопрессина

Гормон гипоталамуса вазопрессин имеет малый размер молекул – в них всего 9 аминокислот, однако оказывает значительное влияние на весь организм. Основная функция – регуляция водного обмена за счет уменьшение количества выделяемой мочи. Этот гормон также:

  • предотвращает массивные кровопотери;
  • формирует питьевое поведение;
  • способствует тромбообразованию;
  • стимулирует выработку инсулина, синтез гликогена.

Функции окситоцина

Окситоцин также относят к гипоталамическим гормонам. По своей структуре он похож на вазопрессин.

Окситоцин работает в женском организме, воздействуя непосредственно на органы-мишени:

  • на мышечный слой матки в конце беременности, заставляя ее сокращаться;
  • на мышцы протоков молочной железы, вызывая выделение молока;
  • на жировую ткань, стимулируя потребление глюкозы и выработку жиров.

Регуляторная и сигнальная функции

Сигнальная и регуляторная функции белков предназначены для координации действий как самих клеток, так и их частей в живом организме. Они направляют рост, развитие, передачу генетической информации, защиту от неконтролируемого размножения отдельных клеток и запрограммированную гибель.

С сигнальной функцией связаны гормоны, цитокины, факторы роста.

Гормоны соединяются с рецептором. Это служит сигналом к запуску в клетках-мишенях определенных химических реакций.

Цитокины – белки, определяющие, будет ли клетка дальше жить и размножаться. Они вызывают процесс естественной гибели клеток или стимулируют их рост. Факторы роста действуют подобным образом.

Регуляторная функция белков реализуется через прием и передачу информации в организме. Так одни вещества контролируют химические реакцтт других.

К регуляторным белкам относят: белки-гормоны, белки-рецепторы, соединения внутри клеток.

Рецепторная функция белков связана с восприятием информации через присоединение веществ к рецептору и в соответствии с ней изменения метаболизма клеток.

Регуляторные белки отвечают за синтез веществ и передачу сигнала внутри клеток.

Транспортная и защитная функция

Рассматривать эти функции следует вместе, так как часть из них выполняют одни и те же белки крови. Защитная направлена на сохранение устойчивости организма в ответ на негативные влияния.

Транспортная функция заключается в доставке к органам питательных веществ, гормонов, лекарственных препаратов, выведение продуктов обмена.

В крови циркулируют альфа, бета и гамма-глобулины. Пептиды фракции альфа 1 уничтожают инфекционных агентов. Альфа-2 и бета-глобулины переносят различные вещества.

Была ли статья Вам полезной и интересной?

Белки из группы гамма-глобулинов – антитела, которые вырабатываются B-лимфоцитами в ответ на проникновение инфекции. В их задачу входит связывание бактерий, вирусов и выведение из организма.

Белки альбумины крови транспортируют молекулы питательных веществ, гормонов, лекарств, выполняют антитоксическую функцию и удерживают воду в кровеносном русле.

Наиболее известный транспортный протеин – это гемоглобин, переносящий кислород к органам и тканям и забирающий углекислый газ.

Он входит в так называемые изофункциональные белки – модификации вещества, выполняющие одну функцию, но имеющие различия в строении.

Выделяют 2 типа взрослого гемоглобина и один эмбриональный.

Моторная и запасная функции

Моторная функция белков связана с движениями организма. Сократительные функции, характерные для мышечных клеток, обеспечиваются белками актином и миозином.

За перемещение в пространстве отвечают белки поперечнополосатой скелетной мускулатуры. Работу сердца, легких, сосудов и других мышечных внутренних органов осуществляют гладкомышечные белковые волокна.

Перемещение клеток (например, движение лейкоцитов в крови) обеспечивается белковыми жгутиками на поверхности мембран. Транспорт веществ в клетку и внутри нее организуют белки кинезины, динеины.

Запасная функция реализуется у животных и растений. Она заключается в хранении протеинов как источника энергии в семенах и яйцеклетках.

Опорная и структурная функция

Самая большая по объему группа белков организма выполняет структурную и опорную функцию. Они:

  • образуют все элементы клеток,
  • придают форму живому организму;
  • создают защитную оболочку, изолируя внутреннюю среду.

Вещества образуют ткани скелета, связочного аппарата, хрящей, ногтей и зубов. К таким белкам относятся: коллаген, актин, тубулин, эластин, кератин, хитин.

Каталитическая или ферментативная функция

Катализ – ускорение химических реакций, которое достигается путем введения вещества-катализатора. Некоторые белки могут оказывать непосредственное влияние на химические реакции.

Эти процессы происходят как в клетках, так и за их пределами. Катализаторы классифицируют по типу реакций, на которые они влияют.

Например, вещества трансферазы отвечают за транспорт фрагментов вещества, лигазы связывают молекулы химическими связями, оксиредуктазы отвечают за окисление и восстановление.

Изоферменты – вещества, ускоряющие одну и ту же реакцию, но имеют разную химическую формулу. Их тоже относят к изофункциональным белкам.

Источники белка

Белки попадают в организм человека с пищей. В пищеварительном тракте они расщепляются до исходных аминокислот, из которых потом происходит образование нужных организму белков.

Все протеины собираются из различных комбинаций 20 аминокислот, 12 из которых может синтезироваться в организме человека.

Но остальные 8 поступают только с животной пищей. Восполнение этих аминокислот за счет растительных белковых продуктов невозможно. При дефиците нужных веществ:

происходит распад собственных тканей организма;
нарушаются процессы восстановления клеток;
снижается иммунитет;
возникает анемия;
часто возникают затяжные инфекции;
возникают безбелковые отеки.

Ограничение или отказ от животного белка представляет наибольшую опасность в детском возрасте, угрожая нарушением роста и развития.

Одной из задач правильного питания является обеспечение потребности организма в белке. Отказ от животной пищи или переход на определенный вид продуктов (например, фрукторианство, сыроедение) негативно сказывается на состоянии здоровья.

Источник: https://EndokrinnayaSistema.ru/gormony/funkcii-belkov.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.